L
"

NASA CR-123

THE REGULARIZED EXPLICIT SOLUTION
OF THE ANALYTIC N-BODY PROBLEM

by L. M. Rauch

Prepared under Grant No. NsG-413 by
CEFE MY ¥T AT T O FTRIVETYIIICITT LT
DE LAY FEASRAE, UANLI VY LBOLE 2

Scuth Orange, N. |

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. « OCTOBER 1964



THE REGULARIZED EXPLICIT SOLUTION OF THE

ANALYTIC N-BODY PROBLEM

By L. M. Rauch

Distribution of this reportis provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it,

Prepared under Grant No. NsG-413 by
SETON HALL UNIVERSITY
South Orange, New Jersey

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Office of Technical Services, Department of Commerce,

Washington, D.C. 20230 -- Price $1.00



THE REGULARIZED SOLUTION OF THE

ANALYTIC N-BODY PROBLEM

L. M. RAUCH

ABSTRACT
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The regularized N-body problem is resolved in
explicit form by the introduction of a pseudo time
parameter in the form of a Sundman and Levi-Civita
transformation. The solution consists of two phases,
namely by the formal representation of the solution
bv a oseudo time series and the analvtical justl—
fication of the process. A brief third part is ad-
ded as a directive in the essential mode of numen-
ization of the problem,
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INTRODUCTION

This paper resolves the regularized N-body problem in
explicit form. It differs from reference [5] in that the
svstem of differential equations are regularized by the in-
troduction of a pseudo time parameter ¢ in the form of a
Sundman [6] and Levi-Civita [3] transférmation relating o
with the dynamic time parameter. This leads to some new
results, specifically so relative to the movable singular-
ities in the solution. However, the methodologies inter-
sect in many common regions, so that some essential results
of the first paper [5] are applicable to the present one.

The explicit resolution of the regularized problem
consists of two phases: (1) the formal representation of
the solution by a pseudo time series and (2) the analytical
justification of the formal series. The first part of the
paper thus generates the general term in the form of an ir-
reducible recursive expression which ultimately is a function
of the boundary conditions. The second part carries over,
by means of the regularizing transformation, the analytical
results generated in ref., [5] to the formal regularized so-
lution. A brief third part is added as a directive to the
essential processes involved in the numerical solution of
the problem.

I. THE FORMAL REGULARIZED FORMULAE

This part deals with (1) a summary of some necessary
expressions given in reference [5], (2) with the simpli-
fication and the regularization of the equations of motion
of the n bodies and (3) with the deduction of the formal
solution of the regularized motion in terms of a power series
of the pseudo time,

Regularization and Summary of Some Results in [5]:

The classical equations of motion for the n bodies in a poten-
tial field v, are given in a Cartesian inertial frame of ref-
erence [4] as

(1.1)




under the following definitions:

i, 3 = 1,2 - - -y n3; h=1,2,3;1¢#73

x1h components of the position vector x1 of the i particle
(mass m;) relative to an inertial frame.

x1J = xJ - x1 : the relative position vector from the i to
the j particle.

H.m, . .
v = z —-TTl“-—— y Hy = Gmy
3 <R13> 1/2

x1ih : the components of the relative vector x13

. c. 2 . cpn 2 caan 2
RY = |x*) =7 (xlh - XJ?> ) (leb> : the square of
h .. h
the magnitude of the vector xt3J

3
sii :z @lj > 7 : a scalar quantity.

The equations of motion thus take the form,

g ihz 7 n, siixiih, {1 # 5 (1.2)
-3
]

A special regularizing transformation [3,6] involving
the parameter o¢, is given by

g = — =V (1.3)

The application of this transformation to the classical form
(1.2) of the equations of motion, leads to the regularized
representation,




ih e s s
v & (v dx ) = Z H.SlJleh
do do 33

As is manifest the right member is an invariant under the

transformation since the quantities S and X are
plicit functions of the real time t.

Define the following quantities:
th

do

Wil = d

= v R wih":’ (wi}y ?

The equations of motion (1l.4) are thus given as

dwlh i 2dxlh

do do

J u,stixiin
;3

Further define the symbols:

ih . ih - . . .. ca e . -
dw z . 1ih , dx = x 1h,w1h5w lh,SlJES}J,lehEX ijh
do 1 do 1 o o] o
wih = w ih
o
Since the indices i, j, h remain unchanged by the
operations that follow, these entities will be deleted

for the time being., The system (1.5) may then be written

as

- T - T ih . ijy ijh
Wy = 2 x; HS X =2 xHy =W =2 XIZ Hjsolxo J

]

where SOXo Vo H = Hj

not ex-

(1.4)

(1.4")

(1.5)

(1.6)

(1.7)



Regularized Power Series Expansion: This section

deals with the serial representation of the regularized
solution of the N-body dynamical system.

The rth derivative of (1.7) relative to ¢ may, by
induction, be shown to lead to the statement

r
) dr+l - ) " — )
wI‘+l = 2 m onyo> = 2 z (S>XP—ShyS’ r = 0,1,2,---
szo
Expand the X_s and y_ quantities in a ¢ power series,
v K %, ot (K
= = = = m! k-m "\ = -
X = X kzo £,0 WX Z T kZo m)gkc ,m=0,1,2, s k>m
- - k k k-
y = yO - z ' Ok’ Vr = z (k"T)'o r, r = 0,1’2’--_’
k=o k! k=o :

k >r, y,(0) =<yk)0=o

Substitute (2.2) and 2,2') in (2.1),

o yk(O)

Hpe1 = 2 g ) o_i (e-9) E=s) *k° r+s-}_i}<zo_(_k_-_§i o=s

(2.1)

(2.2)

(2,2")

(2.3)




(2.3) may be written as

T —
W1 =2 Z Qg H yu(O)ok‘P, Q = Q(k,r,u,s)
s=0 k=0

L9 (2 o

(u (2.4)

Since the quantities S = So and X = X, are not explicitly

dependent on the time parameter t, the formulae for yo = SOXo
and its derivatives as given in [5] are valid if the pseudo
time parameter o replaces t,. Thus the expressions (2.5),
(5.2) and (6.20) given in that reference, if applied to (2.4),
leads to the statement

r T(p) .
Iz = ] ] et 2 |135) (2.5)
(r+2) p=o g=1 H ¢
The symbols in (2.5) are defined as follows
_ 2p33
2
ijh th
(a) |p§g| (le} [X 2 (f gy £1
fzo
ijn ijn oP
niin i ] fg
2 f-2
. f f .
(b) (f,2) = 2 or 1 according as 2 < 5 or L =7 respectively, |




f
(c) [%] Is the largest integer not exceeding g

(d) a?g are the solutions of the linear Diophantine equation
° P
] f af = Py P =142y ==, g =1,2,-- -, P(p)
f=1 g
P
I P o
For f =0 o =p= ) a , 049 =0,D=1,2, - = =
og f=1 f=g
2
(e) G = F(a,bjc3l) Fla,B3ys; 1), ref.[9]

F'(y)

and where the gquantities a,b,c; o ,Bsy are given by (5, 5) and
(5.8) in reference [51].

(£) H=H (al;.g,f> = IPE le +l> [T(f*'l)j fg
(g) aiih - gjh _ gih
q q q

On applving (2.5) for r = u exnression (2.4) is changed to

)
1

r kew w r+l _
W =2 )7 1 1 1 7 Gu+t2)r(u-p)!0g H
r+l k=0 s=0 =0 v=0 f=0 k-u

T(

e~
He~-19
jusf Xrp!

ko,

o g

k-r N

ijh o (r-s)!/r\/k-u\ —
u%q G=0 3Q = 0(k,r,u,s) = —_:——T<s> r-s) g = z cm.
(u-s)! ’ j.:l bl

(2.6)



Equation (2.6) expresses W as given by (2.1), in terms

r+l1’
of the coefficients (&'s) of the power series solution (2.2).
The next step in the determination of an irreducible recur-
sive formula for the £'s is to utilize the definition W = w?

By induction we derive from this definition the state-
ment

r+l
r+l
Wpey = ] ( 1 ) Wilp+1-i (2.7)
1=0

Define the potential as a power series

_ .- k
vV Eouvy s z yko (2.8)
k=o
Change (1.4') to the form
_ _ dax
wO = voxl, x1 = ry (2.9)

With the use of (2.2), (2.8) and the Cauchy product formula,
(2.9) becomes

k

T K

w_= ) ]y £ 0
- (2,10)

© k=0 u=o0 k-uu

- 3 dsw .
By induction © is shown to be
do®
® k
W, = si(X) v g ok-s = 0,1,2,- - -

s kzo uzo (S) K—uu s 8 sLaly (2.11)




Substitute (2.11) into (2.7) and again utilize the Cauchy
formula, These operations lead to the equation,

w
W

"
He~18
[ e B
e
el
O

VZJ (r+2) (r&l) Yo oY & E 0T e (2.12)
V=0

+
r+l -W-U W-U U V

(o]

Expression (2.12) is a second representation of Wisq in
terms of the coefficients of (2.8) and the &'s of (2.2),

Formulation of the Irreducible Recursive Formula:

The purpose of this section 1is to generate an irreducible
recursive expression for the g's,

Equate the right members of (2.6) and (2,12). Let
£ = k + 1 and form the equality of the coefficients of like
powers of the o's. These operations generate a relation
between the y and gcoefficients, namely,

k+l k+l-w W

2 z ZL wl(k,P,U,WaV;Y,E) = ¢ (u,v,wiY,%) (3.1)
WZ=0 u=o V=0
where
k+1
wl = (r+l)! <r+l>Yk+l-w—qu-u£u£v (3.2)
—AI .h
¢ = ) 2 (u+2)!(u-p)! OH‘IJ [g 1520 ,1-==,1;
! k-u’ s s T3
KyS,sU,psg Up®
u=0,1l,---,k30=0,1,=--=,u (3.3)




Let v take the specific value w, v = w, so that
(3.1) becomes

k+1l k+l-w ,
k+l =
) ] >y (K1D) Y Y, EE
=0

k+l-w-u w-u'u'w

k+l k+l-w w-1
-1 11

W=0 u=o

Let w = k + 1 and the above statement becomes

-

(e (1) vy ST T T

+1 +1
ok O k W=O Uuzo V=0 1

W
(3.4)
k+1
- 1
¢2 = (p+l)! (r+i) Yk+l-w-qu—u€u€w
Add the left member of (3.4) to both sides of the
equation, Thus
k+
1 = -
2(r+1)! ( )Y o k+1%05k41 T 0 - 1 <w1+ ‘112)
Uu,v,w
0o<w<k+1l,0<u<k+1l-w,0¢<vVv<w-=-1 (3.5)

-9~




It follows that

k+1
£ 0 - (r+1)! <r+i) u.élw Yk+r—w—qu-u€u<€\'+€w)
kel K+1

r+l) Yon+l€o

2(r+1)!

The identity (3.6) is a recursive expression of the £'s
in terms of the v's and &'s with lesser subscripts.

To attain an irreducible recursive form for g, the
y's, as given in (3.6), must be expressed in terms of the
£'s. The serial definition for the potential namelvy

o v d VO

D
vv = ] ¥ cp,Y = —%> Vo 5 ’
o} p:o 'D p' O:O) ) -

is used for the derivation of the required recursive form,
Define

1
i = (i) 7

m

1
1 = = = N = = -
or more generally T = to Ro , R RO, m > where the

superscripnts are again deleted. The expression (3.8) of
reference [5] becomes (by replacing TD for Sn and t by

r

the pseudo time parameter o),

-10-

(3.6)

(3.7)

(3.8)




The value of Rf in terms of the X's is given in ref,

[5] by equation (4.2),

£
.. 3 [7] £\ i4p 12
Rl] = Z 2 (fal)(l)xl]hxl]h ’ f = la2a‘ - =
f h=1 %=o0 L f-1

where the parameter o replaces t. In view of the formula

v =] ] , H.. = Gm.,m

r 3 1] p 1] i3

it follows that
P
— P(v) D a
.o P £ fg
v, = HR & L DK I D (£,2) <2>X2Xf -z] ,
: g=1 h, 2

13

where the superscripts have been deleted,

By means of the defined expansions

_ T . K T (XY  k-r iih _ _3h _ih

X = X = z n o X = X P.(r)n g r = g - £
o x=o K I RPN k *k k k
the expression for Xr’ when ¢ = 0 is given as
(X ) = rln
r/o=o0 T

(3.10)

(3.11)

(3.12)

(3.13)

-11-




In terms of the superscripts and of ¢ = 0, (3,11) becomes

. m-p P(p) D
(Yp) _ = E o (=59) L DK I LS

iz_ I En ()

O

It follows that

_ 2pt*l
v 2 P r
Ylh{-ﬁ} =1 7 = (rR*7) K n[Z
D ! . p! j,g 11‘o 0=0 f=0-s,2
p

In view of §6.20) of [5] expression (3.15) is written as

ijh

Yih rpgio= o

p n1]h <R13>
r-p o /og=o0

(3.14)

(3.15)

(3.16)

In combination with (3.6), (3.16) gives the desired irreducible

recursive relation for the £'s.

-12-




The formal solution of the regularized system of
equations of motion (1l.4) or (1.5) expressed in terms
of a power series in the pseudo time parameter o, is
given by equations (2,2), (3.6) and (3,16), Statements
(3.6) and (3.16) are the specifications for the coeffic-
ients of the series (2.2) as irreducible recursive forms.

. . ih .
To be sure the general coefficient €;+ is ultimately

1

given in terms of the initial positions €;h and velocities
ih . .
€l . To formulate such an explicit statement would lead

to unwieldy operations and forms whose utility in numerical
evaluation or ease in dynamical interpretation, is highly
questionable,

ITI. ANALYTICAL PHASE

The analytical aspect of the regularized n body problem
follows the formal phase where the coefficients Ek of the

pseudo time series have been generated as irreducible recursive
functions., The basic consideration of the validity of the
serial representation of the solution over a time region was
shown to hold [5] for all t except for well defined movable
singularities. These existential phases for dynamical (real)
time will be transformed to considerations of pseudo time.

The Relation Between Pseudo and Real Time: In this

section the function o = o(t) is first generated followed by
the determination of its inverse.
.. . do
(a) The regularizing transformation (1.3), s v, leads

to the indefinite integral

Sudt + c

g

-13-




In view of (3.7) the above integral becomes

With the assumption that o = 0 when t = 0 we get

(vp)tzo tp+l (4,1)

¢ g (p+1)!

p=o

To compute <Vp>t-o expression (3.16) is available

where t = 0 replaces 0 = 0, namely

'ijh
rpglt=o

nP—P<RO>t=O e

- - !
<VP>t=o = p! Yp = b
Equation (4.1) in conjunction with (4.2) thus establishes
a time integral for o, namely o = o(t)
(b) To determine the inverse function t = t(o) define
v =1 (4.3)
v

do

Again use the transformation qr -V in the form dt = Vdo,

Consider the inductive formula (3.5) of reference (5], namely

—14-




P
ary
f s D = 1,2,3,--~

P(p)

S = R - )

- D b
D{m,p) K{(p,a n R
P o o 3= ("ufg>f=o

1

This formula is valid for expression (4.3) if S and R

are replaced by V and v respectively and m = - 1., Thus
-l-p P(p) D QD
V = v ) D(-1,p) K(p,ap> 1 v fe R (4.4)
p o g=l fg f=o f
D

where the quantities D, K, p, G%g are defined bv the

formulae in the expressions (3.9). For the quantity D,

D = D(-1,p)

— P+l
(-1)(-1-1)(=1=2)===(-1-B) = (=1)° (D+1)!

Write dt = Vdo in the form t(o) = fV(o) do + ¢

With the specification that t = 0 when o = 0

vV, (0)
® k
t(g) = § e ot (4.5)
k=0 (k+l)!
where the quantity V, (0) = (Vk)U=o is given by.its

expression in (4.4). The function t(o) given by (4,5)
and (4.4), specifies the real time in terms of the pseudo
time.

~15-




The Movable Singularities of the Solution: It

has been observed in reference [5] that the right members
of the equations of motion (1.1) or 0.2) are analytic over
the finite complex plane on the condition that the magnitude

: /2 . s iy
(Rolj) ! of the relative position vector x*J between the

i and j particle is not zero, namely that i # j, A similar
condition holds for the right members of the regularized
equations of motion combined with an added situation.

ih
To show this consider the first factor 9X°_ of the
do
right members of the system of equation.

This may be written as

dx _ dx gt

X
do dt do \Y

In view of the regularizing transformation (1.3). The right
member of (1.5) thus becomes

2x R
—= § H.,siixilh
v 3 ]

The onlv singularities (other than the movable ones) that
may occur is due to the condition that the field potential
v = 0. So that for i # j and v # 0 the above function 1is
analytic over the finite complex plane o.

Thus the solution, in view of the existence theorem [1],
(2] for a system of differential equations, is thus void of
singularities (intrinsic or movable) for some region in the
complex ¢ plane, '

The movable singularities in the complex t plane is
given in reference [5] bv the condition (7.6)

-16-




-

; ij) i3h 4, i3 _ o i o 131 -
<?O oo Exo R, 2R M1 %, ]t

N w

or the two conditions

-1
(R ij) =0 or (3x ijh g 13 . or 13 . i3h) - 4
o o o 1 o) 1 (o) ’ (5.1)

Where the barred letters are used, for the moment, to indicate
derivatives relative to the time t.

do = v is used on
dt

the above two conditions to transform them in terms of g¢.
Thus

1

The regularizing transformation o

dx dx dx dXx

i = 0 = _ﬁp 22 = __p v = X. v H X = __9
1 4t do dt do 1 1 46

§ = EEP = dRO do = EEP v = R.v R = EEO
1 dt do dt -~ do 1’71 do

The two statements for movable singularities relative to t
thus turn into the conditions

H

-1
i . ijh g i3_ orij x i3h) -
(r, )ozo 0 or (v) _ =0 or (3x 13 R . 2r1) x| )Uzo 0 (5.2)

The first and third movable singular conditions(for t = O0)
in (5.2) has been discussed in reference [5]. For the added

equation (v)o=o = 0, a brief discussion is given.

-17~




We may either deal with it on the basis of the def-
inition of the potential v or preferably by the use of
the regularized equations of motion in the form (1.4).
Since the left member is zero for (v)c,:O = 0, the ex-
pression

[ y I~{,Sinij}€' z [Z H, (le) xiiﬂ = 0
J 3 3 0=0

. =0
J=1 °

Another form of (5.3) mav be generated by the definition
ij
h

position vector X'J between the i and j masses. With the def-

of the quantity 0 as the direction angle of the relative

inition of R*J in mind, namely as the square of the magnitude
of the relative position vector Xl], the formula
ijh

cos 6 1] = 2 .o\ 1/2
t (1)

is generated. Expression (5,3) then takes the form

n H.cos® ]
z . . =0f0ro=0,i#j; i$j"l’2:"‘sna
j:]_ le
o
h=1,2,3
Two possibilities unfold: (1) cos 8;3 = 0 for any jJ # 1 and
ij _ : 17 .
(2) RO = = for any j and cos eh # 0 for any h and j.

-18=-
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(5.4)

(5.5)




For case (1) an added restriction must be imposed,
namely the identity

The initial angles must be chosen for a particular j for
which the above identity is satisfied. The question whether
actual dynamical situations exist under these singular re-
strictions will, for the time being, be held in obevance.

For case (2) only the initial relationship between
the positions of the n bodies are given., Thus the rela-
tionship is independent of the initial velocities. It is
in a primitive sense manifest that if the bodies are init-
ially mutually infinite they will remain so for any finite
time., However, this "physical intuition® should be analyti-
cally verifiable, namely, that no finite discernable dynamics
is possible. We make the verification with the purpose of
illustrating some of the analysis.

Let one of the masses, say m,, be in a finite region

and the remaining ones at infinity. Since the second case

of the movable singular condition implies that < ]j_> =0
Rolj 6=0

ih
for any j # i, it follows from (3.16) that v = 0, p=1,2,---
D

. . . . ijh .
Since 2 is contained as a factor in the symbol |;%g| given
R 13
o

by (2.5), the |ijh = 0 when 0. So that from (3.6)

l el
rpg )
<RO =0

-19-




el -0 when — 2 =0, k = 0,1,2,~ - -

K (Rolj> 0g=0

The expansion for x in (2.2) becomes

X =& + £ ¢ (5.6)

Use (4.1) to transform (5,6) to real time,

<Vp‘>t=o b+l

ih 1h ih o t
X = £ +E z
o 1 b0 (p+1)!
and by (4.2) (V ) = 0, since the factor lij = 0 when
P/ t=0 RO
t =0 =0
So that
ih ih
xF ks (5.7)

h =1,2,3; 1 is some chosen value over the interval

1,2,---,n

The conclusion is manifest; the chosen particle m,

remains in the same position relative to an inertial frame
for all finite time regardless of the states of the remaining
n-1 bodies at infinity. The existence of movable singular-
ities, given by the second condition of (5.2), implies a de-
generation of the n body problem to a single body one with

no dynamical states sad indeterminate ones of the remaining
n-1 bodies in the absolute.

-20-




III. COMPUTATIONAL PROCEDURE AND SUMIMARY

The computational procedures for the regularized
solution of the n body problem are in the broad aspects
the same as those discussed in reference [5]. We list
the formulae to be used for the computation and then
very briefly specify the numerical process.

Formula for Computation: We list the basic

formulae and the definitions of some of the svmbols in-
volved. The remaining definitions mav be found in the
text or in reference [5].

- oh o . . . .
th = % * = z glhck s 1 # 3, 1 = 1,24- - -,0n3 (2.2)
o k
k=0
h = 1,2,3
- (*2) g v & (e )
. r+l k+r W-u w-u u
glh Us VW : (3.8)
k+1
2 (P+l)<r+l Yk+l€0
0<u<k+1-w,0<v<w-1,0¢2%w¢5<k+1,
K = 0,1,2,--=, T = 0,1,2,-~-
1 ‘ijh
1 r g= .
yp = ijgg 2 s p= 1y2,--- and special (3.186)

‘ 1]
“r-p (Ro )g:o

value p = 0, g = 1,2,---, P(p)

-21-




_2p+3 [F‘l
. v 2 5 ~3 L7
(ay |in S b (R”) 1 J T (f,)f! (2.5)
? rPelo=o r-p ~o°~ zo |n=1 2=o
D
C!fg
nijnnijn
4 f-2
Pop
/ z f“% 2 Dy P = 1,2,-=-, g = 1,2,---P(D)
Fz1 8
(2.5)
(a) 5
D D o
b - - i = 0 = 2 m——

The remaining symbols and some others are given in the
text by (2.5), (b), (e), {(£), (g).

The above expressions are the basic ones in compu-
tation. To these must be added some supplementary for-
mulae and definitions,

(A7
¢ = ] 2(u+2)!(u- p)'QH—| Sy
KyS,UyDyg UPFlo=o k-u
s = 0,1,-~-,v3 u = 0,1,---k3; p = 0,1,-=~,u3 (3.3)
n
0 = Q (k,r,u,s) = SE=8LTY(K-y ] mC
(u- S)'\s j=l

=22~




2

rdy)
hypergeomtric function and a,---3; ,-~- are given as
specified in text.

(e) G = F(a,b3c3;1) F(a,B3v3;1) where F is a

To express the pseudo time o0 1in terms of the real
time t:

o
p=o (p+1)!
. ijh
D/ t=0 : D ijh ij
e (B )
r-p O t=o0

The movable singularities of the solution satisfy the fol-

lowing three conditions:

-1
ij - = 0 ( ijhg i _ppiiyijh ]
<R0 >0=o 0, (V)b=o ’ 3Xo 1 Ro Xl gz0

The second condition of (5.2) may also be written as

ijh
iy %,
o8 Oy T ()2
O

(2.5)

(2.5)

(4,.1)

(4,2)

(5.2)
0

(5.4)
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The Initial Computational Procedure: The initial

computations on which the remaining numerical phases depend
is the evaluation of the quantities svmbolized by l%gg‘ and
given by (2.5), (a). This in turn depends on the "matrices
of solutions" a?g of the Diovhantine linear equation expressed

by (2.5), (d). Our object in this section is to specify very
briefly these two numerical modes. A somewhat more elabor-
ate specification of the unregularized numerication is given
in reference [51].

P
fg

and linear equations (2.,5), (d). Tabular matrices for the
a's are constructed. As an illustration consider the values
p =1, 2---,5 and p = 0,

P

1. The quantities a and aog satisfy the Diophantine

Tabular Matrix for p = 1, 2---, 5 and p 2 0
: ! !
if>g Pp=0p=1%p =2 p =3 p = 4 p =5
o 0 0 01 jp12 01223 0122334
og
aP 1 2 0 310 B2100 5321100
lg
aP 01 10 {01020 (©102010
2g
oP 001l (00100 0010010
3g
oP 00001l [0o0oo00100
bg
o? 0000C0CO0 1
S5g

-2k




. ijh . e .
2. To evaluate the quantity |rjg| a simplification
D¢

is made by the following formulation. Define

3]

3
P(f,2,1,5,8) = lgof!(f,z) Szlnlnf_s where i, i, s

is deleted for the time being;

D
p *fg
P(p,y~—=) = fgo[§(f,z,---ﬂ

It follows, on the basis of these definitions, that
p
. Ohg p-1
TN T b e .

Evaluate the ¢'s initially and from these the {'s may be
determined,

- 2 - 2
¢(0,---) = 0! (0,0) g n g n,
—— = .! = 2
$(1,--=) = 1! (1,00 ¥ nn ) non
S S
2
$(2,---) = 21 E2,0) g nong * (2,1) g ny j]: 2!

LAY
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¢(3’___) = 31 E3,o) Z nNg * (3,1) 2 nlnzj =
s s
2 ] nn, +2] non 1
[ < 3 s 1 %_
- = E * ¥ 2
P4 mmm) = b1 lf Longn, ¥ 2 D ngn * ] ”ZJ
-——=) = 512
¢(5,0 ) ‘: 2 nons + 2 z nlnu+2 I n2n3j

The expressions

31

|ijh = Qijh U(py---) become
rpg rp
‘ig? = Q;gh P(0,===) = Qigh.l (since by definition
aég =0)
1
a
- . . c it -1 OF
ol oHh ya, = o 060, |
rlg rl rl
*1g
lzb(l,---)jl
2
. . “og
ijh| _ 413 ) = %3 [.0 ___]
!ﬁg Qny  U2,===) = Q5" 16(0,-=-)




o a
ijh|_ .ijh _ ~ijh og lg
‘r%g - Qp3 ¢(3a“‘) = Qr’3 ED(O,—--)] [‘)(1,---):]

The two basic phases in numerization of the regu-
larized n body problem is fulfilled with an indication
of the processes involved in formulae (2.5), (a) and
(2.5), (d). The remaining processes necessary in the de-

termination of the coefficients Ei}L k = 2,3,~-- of the o

series (2.2) in terms of the initial conditions given by
Céh and Eih are readily attainable. However, some of the

necessary definitions, not listed at the beginning of this
section, may be found in the text proper or in reference [51].
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